MIS in the Congested Clique Model in $O(\log \log \Delta)$ Rounds

نویسنده

  • Christian Konrad
چکیده

We give a maximal independent set (MIS) algorithm that runs in $O(\log \log \Delta)$ rounds in the congested clique model, where $\Delta$ is the maximum degree of the input graph. This improves upon the $O(\frac{\log(\Delta) \cdot \log \log \Delta}{\sqrt{\log n}} + \log \log \Delta )$ rounds algorithm of [Ghaffari, PODC '17], where $n$ is the number of vertices of the input graph. In the first stage of our algorithm, we simulate the first $O(\frac{n}{\text{poly} \log n})$ iterations of the sequential random order Greedy algorithm for MIS in the congested clique model in $O(\log \log \Delta)$ rounds. This thins out the input graph relatively quickly: After this stage, the maximum degree of the residual graph is poly-logarithmic. In the second stage, we run the MIS algorithm of [Ghaffari, PODC '17] on the residual graph, which completes in $O(\log \log \Delta)$ rounds on graphs of poly-logarithmic degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed MIS via All-to-All Communication

Computing a Maximal Independent Set (MIS) is a central problem in distributed graph algorithms. This paper presents an improved randomized distributed algorithm for computing an MIS in an allto-all communication distributed model, known as the congested clique model, defined as follows: Given a graphG = (V ,E), initially each node knows only its neighbors. Communication happens in synchronous r...

متن کامل

Lessons from the Congested Clique Applied to MapReduce

The main results of this paper are (I) a simulation algorithm which, under quite general constraints, transforms algorithms running on the Congested Clique into algorithms running in the MapReduce model, and (II) a distributed O(∆)-coloring algorithm running on the Congested Clique which has an expected running time of O(1) rounds, if ∆ ≥ Θ(log n); and O(log log log n) rounds otherwise. Applyin...

متن کامل

Near-Constant-Time Distributed Algorithms on a Congested Clique

This paper presents constant-time and near-constant-time distributed algorithms for a variety of problems in the congested clique model. We show how to compute a 3-ruling set in expected O(log log logn) rounds and using this, we obtain a constant-approximation to metric facility location, also in expected O(log log logn) rounds. In addition, assuming an input metric space of constant doubling d...

متن کامل

MST in O(1) Rounds of the Congested Clique

We present a distributed randomized algorithm finding Minimum Spanning Tree (MST) of a given graph in O(1) rounds, with high probability, in the congested clique model. The input graph in the congested clique model is a graph of n nodes, where each node initially knows only its incident edges. The communication graph is a clique with limited edge bandwidth: each two nodes (not necessarily neigh...

متن کامل

Super-Fast MST Algorithms in the Congested Clique Using o(m) Messages

In a sequence of recent results (PODC 2015 and PODC 2016), the running time of the fastest algorithm for the minimum spanning tree (MST) problem in the Congested Clique model was first improved to O(log log logn) from O(log logn) (Hegeman et al., PODC 2015) and then to O(log∗ n) (Ghaffari and Parter, PODC 2016). All of these algorithms use Θ(n2) messages independent of the number of edges in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018